咨询热线

400-007-6266

010-86223221

2016年中国盐差能产业资源、发展历程及市场特征分析

导读: 2016年中国盐差能产业资源、发展历程及市场特征分析。在大江大河的入海口,即江河水与海水相交融的地方,江河水是淡水,海水是咸水,淡水和咸水就会自发地扩散、混合,直到两者含盐浓度相等为止。

相关行业报告《2017-2022年中国海洋产业竞争现状及十三五发展策略研究报告 

  一、我国盐差能产业资源和规划现状 

  海水里面由于溶解了不少矿物盐而有一种苦咸味,这给在海上生活的人用水带来一定困难,所以人们要将海水淡化,制取生活用水。然而,这种苦咸的海水大有用处,可用来发电,是一种能量巨大的海洋资源。 

  在大江大河的入海口,即江河水与海水相交融的地方,江河水是淡水,海水是咸水,淡水和咸水就会自发地扩散、混合,直到两者含盐浓度相等为止。在混合过程中,还将放出相当多的能量。这就是说,海水和淡水混合时,含盐浓度高的海水以较大的渗透压力向淡水扩散,而淡水也在向海水扩散,不过渗透压力小。这种渗透压力差所产生的能量,称为海水盐浓度差能,或者叫做海水盐差能。


  海水盐差能是由于太阳辐射热使海水蒸发后浓度增加而产生的。被蒸发出来的大量水蒸汽在水循环过程中,又变成云和雨,重新回到海洋,同时放出能量。 

  盐差能是以化学能形态出现的海洋能。地球上的水分为两大类:淡水和咸水。全世界水的总储量为1.4X109km3,其中97.2%为分布在大洋和浅海中的咸水。在陆地水中,2.15%为位于两极的冰盖和高山的冰川中的储水,余下的0.65%才是可供人类直接利用的淡水。海洋的咸水中含有各种矿物和大量的食盐,1km3的海水里即含有3600t食盐。在淡水与海水之间有着很大的渗透压力差(相当于240m的水头)。从理论上讲,如果这个压力差能利用起来,从河流流入海中的每立方英尺的淡水可发0.65kw·h的电。一条流量为1m3s的河流的发电输出功率可达2340kw。从原理上来说,可通过让淡水流经一个半渗透膜后再进入一 个盐水水池的方法来开发这种理论上的水头。如果在这一过程中盐度不降低的话,产生的渗透压力足可以将水池水面提高240m,然后再把水池水泄放,让它流经水轮机,从而提取能量。从理论上来说,如果用很有效的装置来提取世界上所有河流的这种能量,那么可以获得约2.6TW的电力。更引人注目的是盐矿藏的潜力。在死海,淡水与咸水间的渗透压力相当于5000m的水头,而大洋海水只有240m的水头。盐穹中的大量干盐拥有更密集的能量。利用大海与陆地河*界水域的盐度差所潜藏的巨大能量一直是科学家的理想。在本世纪70年代,各国开展了许多调查研究,以寻求提取盐差能的方法。实际上开发利用盐度差能资源的难度很大。 

  由于海水盐差能的蕴藏量十分巨大,世界上许多国家如美国、日本、瑞典等,都在积极开展这方面的研究和开发利用工作。我国也很重视海水盐差能的开发利用,据估计,我国在河口地区的盐差能约有1.6亿千瓦。 

  科学研究证明,两种含盐量不同的海水在同一容器中,会由于盐类离子的扩散而产生化学电位差能。同时,利用一定的转换方式,可以使这种化学电位差能转换成为电能。近年来迅速发展的世界海洋能网海洋盐差发电技术,就是利用这种原理来工作的。 

  当两种不同盐度的海水被一层只能通过水分而不能通过盐分的半透膜相分割的时候,两边的海水就会产生一种渗透压,促使水从浓度低的一侧通过这层膜向浓度高的一则渗透,使浓度高的一侧水位升高,直到履两侧的含盐浓度相等。 

  有人通过理论计算,江河入海处的海水渗透压可以相当于240米高的水位落差。位于亚洲西部的死海,盐度要高出一般海水的78倍,渗透压可以达到500个大气压,相当于5000米高的大坝水头。为了探索海水盐差发电的效果,以色列一位名叫洛布的科学家在死海与约旦河交汇的地方进行实验,利用渗透压原理设计而成的压力延滞渗透能转换装置,取得了令人满意的成果。美国俄勒冈大学的科学家利用渗透原理,研制出了一种新型的渗透压式盐差能发电系统。 

  这种系统把发电机组安装在水深为228米以上的海床上,河流的淡水从管道输送到发电机组。安装在排出口前端的半透股只能通过淡水,不能通过海水。若将发电机组安装在海面228米以下的地方,海水的静压力就会超过渗透压。这时就会发生相反的过程,淡水向反向输送。由于排出的淡水密度比周围海水小,因而上浮混合,而在底部保持稳定的盐度差。这种发电系统是一种很有发展前途的渗透压式盐差能发电系统。 

  现在,人们正在研究开发一种新型的蒸气压式盐差能发电系统。在同样的温度下,淡水比海水蒸发得快。因此,海水一边的蒸气压力要比淡水一边低得多,于是,在空室内,水蒸气会很快从淡水上方流向海水上方。只要装上涡轮,就可以利用盐差能进行工作。利用蒸气压式盐差能发电不需要处理海水,也不用担心生物附着和污染。除此之外,人们还采用机械一化学式盐差能发电系统和渗析式盐差能发电系统等方式来获得电能。经过实验,也都有着诱人的发展前景。 

  据科学家分析,全世界世界海洋能网 

  海洋内储藏的盐差能总输出功率可以达到35亿千瓦之多。而且,大部分海水在循环中会得到不断的更新和补充,因此,它那巨大的能量,正等待着人们努力探索和开发。 

  二、我国盐差能产业发展历程 

  盐度差能是海水和淡水之间或两种含盐浓度不同的海水之间的化学电位差能,主要存在于河海交接处。淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。 

  海水盐差能发电发展现状 

  1939年海水盐差能发电的概念被首次提出,由于盐差发电技术最为关键的组件——渗析膜的发展滞后,盐度差能发电技术进展较为缓慢。经过几十年的发展,渗透压能法每平方米膜面积的发电功率已从0.1W提高到3W 

  2003年挪威斯塔特克拉弗特公司建成世界上第一个专门研究盐差能的实验室,并于2009 11月建成世界上建设一座 4kW 的盐差能发电站。 

  20115月美国斯坦福大学研发出盐差能新型电池。201411月荷兰第一座盐差能试验电厂也投入发电,电厂装有400m2半渗透膜,每平方米半渗透膜的发电功率为1.3W,每小时可处理22万升海水和 22万升淡水。我国在 1980 年前后开始盐差能发电研究,1985年在西安采用半透膜,研制成功干涸盐湖浓差能发电实验室装置,半透膜面积为14 m2。试验中淡水向溶液浓盐水渗透,溶液水柱升高10 m,推动水轮发电机组发电功率为0.9~1.2W 

  三、我国盐差能市场阶段性特征 

  海洋能发电一般是先将海洋能转换成机械能,再转换为电能。目前,海洋能发电装置的转换效率低,急需研发高转换效率的发电装置。同时,海洋能输出功率受自然资源特性,如潮流流速流向、波浪浪高等限制,具有很强的随机变化性、间歇性、波动性等特点,输出功率变化大。发展海洋能既可以建立独立分布式电站,也可以 建立并网式电站。建立独立式电站应考虑电力用户需求问题,只要沿海和岛屿居民有需求就可以就近布置电 站,不考虑并网问题。 当考虑海洋能发电并网时,海洋新能源并网会给电力系统的调峰、调频、电压控制、电能 质量等带来一定的影响。 为了充分发挥海洋能发电的优势,解决其输出功率波动对电网的影响,需要在发电 系统中配置一定容量的储能装置。控制储能系统和发电场的协调运行,使储能系统适时吸收和释放功率,可以有效地平抑海洋能电场注入电网的功率波动,改善并网设备运行稳定性,提高源网协调性能。 

  盐差能发电的主要工作原理是将不同盐浓度海水之间的化学电位差能转换成水的势能,再驱动水轮机 发电。盐差能的研究以美国、以色列的研究较为领先,中国、瑞典和日本等也开展了一些研究。 例如, Statkraft公司从1997年开始研究盐差能利用装置,2003 年建成世界上第一个专门研究盐差能的实验室, 2008年设计并建设了一座功率为2~4kW的盐差能发电站。相比其他海洋能而言,盐差能利用技术还处于 实验室原理研究阶段。 

  四、我国盐差能产业发展现状分析


  国内盐差能相比其他海洋能而言,盐差能利用技术还处于实验室原理研究阶段。暂无较大的发电项目。 

资料来源:互联网,中国报告网整理,转载请注明出处(YS

更多好文每日分享,欢迎关注公众号

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。

中国锗行业:垄断格局及战略资源属性凸显 进出口量显著减少下国内外价差快速拉大

中国锗行业:垄断格局及战略资源属性凸显 进出口量显著减少下国内外价差快速拉大

锗是一种化学元素,是元素周期表第14族中的一种准金属,具有金属和非金属的共同性质。全球锗已探明储量 8600-9000 吨,主要分布在美国和中国,分别占总储量的43.02%和39.20%。

2025年11月30日
中国主导全球便携式储能电源行业供给 全渠道销售生态构建成竞争关键 容量段将提升

中国主导全球便携式储能电源行业供给 全渠道销售生态构建成竞争关键 容量段将提升

便携式储能电源市场在全球范围内呈现出不同的发展现状。北美市场较成熟,因美国人热爱户外活动,美国成为全球最大的便携式储能电源需求市场,占比约47.3%。亚太地区增长较快,中国、日本、韩国等国市场表现尤为突出,其中日本主要用于应急,需求占比高达29.6%,主要由于日本近年来自然灾害频发,给居民的正常电力供应带来威胁;中国市

2025年11月28日
我国锂电池结构件市场 “一超一强”竞争格局凸显 锂电池出海需求机遇释放

我国锂电池结构件市场 “一超一强”竞争格局凸显 锂电池出海需求机遇释放

我国锂电池结构件行业已形成完善产业链,上下游协同发展。在新能源汽车与储能产业驱动下,行业随锂电池出货量高增快速扩张,2019-2023年市场规模年均复合增长率达67.20%。当前行业呈现科达利与震裕科技“一超一强”格局,2024年CR4升至49.73%,集中度进一步提升。国内锂电池企业海外布局推进叠加海外需求增长,为锂

2025年11月20日
我国半固态电池商业化进程加快 已进入规模化装车“倒计时”阶段

我国半固态电池商业化进程加快 已进入规模化装车“倒计时”阶段

与全固态电池相比,半固态技术并未脱离液态电池技术框架,是短期内能够迅速普及、基本不增加成本且可直接利用现有产线的解决方案——其生产工艺可兼容现有锂电池产线的70%以上,车企无需彻底重构生产线,仅需对极片制备、封装等环节进行改造,大幅降低了产业升级成本。

2025年11月20日
动力与储能双极驱动 我国涂层电池箔行业迎百万吨增长空间 头部效应初显

动力与储能双极驱动 我国涂层电池箔行业迎百万吨增长空间 头部效应初显

涂层电池箔作为提升锂离子电池性能的关键核心材料,正迎来前所未有的发展机遇。在新能源汽车普及与储能系统建设的双轮驱动下,行业需求持续爆发,产量预计将从2024年的32.5万吨飙升至2029年的135.4万吨。与此同时,市场已形成鲜明的“金字塔型”竞争格局,具备一体化产能与技术优势的头部企业正加速扩产,市场份额持续集中,行

2025年11月20日
全球钼资源稀缺性凸显 供需紧平衡基本面下国内钼价震荡上行

全球钼资源稀缺性凸显 供需紧平衡基本面下国内钼价震荡上行

当前全球钼供需处于紧平衡状态。2021以来,随着全球公共卫生事件得到控制,经济逐步向好,环保趋严制约供应端扩产以及全球地缘政治紧张加剧,导致钼供需缺口增长,且这一缺口不断扩大。数据显示,2024年全球钼总产量为29.02万吨,消费量为29.41万吨,供需缺口增长到了-0.39万吨。预计2025年和2026年全球钼金属产

2025年11月19日
从“特供”到“普适” 我国纤维增强材料光伏边框行业增长动力充足

从“特供”到“普适” 我国纤维增强材料光伏边框行业增长动力充足

在“双碳”战略的强劲驱动下,中国光伏产业正经历前所未有的蓬勃发展。2024年,我国光伏新增装机容量已达277.17GW,组件产量突破627.5GW,这为产业链的每一个环节带来了巨大的市场机遇。作为光伏组件的关键辅材,占比成本约9%的边框,正迎来一场由材料创新引领的深刻变革。

2025年11月18日
再生铅行业面临原料供给和需求下行压力 反内卷促市场洗牌 低度寡头垄断格局已形成

再生铅行业面临原料供给和需求下行压力 反内卷促市场洗牌 低度寡头垄断格局已形成

近年来,随着国家持续推进循环经济,再生铅逐渐主导铅产业。根据数据,2023年我国再生铅产能占总产能的比重超过60%。

2025年11月16日
微信客服
微信客服二维码
微信扫码咨询客服
QQ客服
电话客服

咨询热线

400-007-6266
010-86223221
返回顶部