咨询热线

400-007-6266

010-86223221

目前我国放射性废水有三大类处理技术 其中膜处理成最热门研究方向

        对于中低水平的放射性废水,一般采用的处理方法是,将大部分放射性核素转移到小体积的浓缩液中,即进行浓缩处理,然后对浓缩液进行进一步处理处置,使大体积废水中剩余的放射性核素达到排放标准,将其排放于环境中进行稀释、扩散。因此,放射性废水处理效果的评价指标主要有两个:一是浓缩倍数;二是去污系数。浓缩倍数是指放射性废水的原体积与处理后浓缩液的体积之比,浓缩倍数越大,则浓缩后的体积越小,贮存也就越经济、安全。去污系数是指原水的放射性浓度(活度)与处理后水的放射性浓度(活度)的比值,去污倍数越大,则处理后的废水中剩余放射性浓度越低,排放、贮存就越安全。

        根据我国相关标准规定,放射性废水分为3级,低放废水(浓度≤4×106Bq·L-1)、中放废水(浓度在4×106~4×1010Bq·L-1(含)之间)和高放废水(浓度>4×1010Bq·L-1)(国家环境保护总局,1995)。实际产生的废水绝大多数属于中低水平放射性废水,而放射性废物最终的处置方式都是将核素固定后再进行永久储存。因此,中低放废水处理的关键在于废水的减量化处理,即放射性废水的浓缩处理。

        对于放射性废水处理,根据其中放射性核素的种类不同以及在溶液中存在的形态不同,需要采用的处理方法也不同。目前,常用的处理方法可分为三大类:①通过发生化学反应去除废水中放射性核素离子,具体方法有中和沉淀法、硫化物沉淀法、铁氧体共沉淀法、化学还原法、电化学还原法等;②通过吸附、浓缩、分离等手段,使废水中放射性核素离子在不改变其化学形态的条件下得到去除,具体方法有沸石吸附、矿物吸附、膨润土吸附、溶剂萃取、离子交换等;③借助微生物或植物的吸收、积累、富集等作用,去除废水中放射性核素离子,具体方法有生物絮凝法、生物吸附法、植物处理法等。目前,常用的处理放射性废水的方法主要有化学沉淀法、离子交换法和蒸发浓缩法。

处理放射性废水的方法
 
资料来源:观研天下整理

1、化学沉淀法

        化学沉淀法是向废水中投放一定量的化学絮凝剂,如硫酸钾铝、铝酸钠、硫酸铁、氯化铁等,有时还需投加助凝剂,如活性二氧化硅、黏土、聚合电解质等,经搅拌后发生水解、絮凝,使废水中的胶体物质失去稳定而凝聚成细小的可沉淀的颗粒,废水中的放射性核素发生共结晶、共沉淀,或被凝絮、胶体吸附后进入沉淀泥浆中,以此达到分离、去污、浓缩废液的目的。化学沉淀法的优点是:方法简便、费用低廉、对大多数放射性核素具有较好的去除效率,以及对水质水量适应性强的优点,同时使用的处理设备和技术都有相当成熟的经验。因此,在早期的放射性废水处理中,大多数都使用化学沉淀方法处理中低水平放射性废水。在化学沉淀法处理放射性废水中,常用的化学沉淀剂主要有铝盐、铁盐和磷酸盐等。化学沉淀法的缺点是去污系数较低,产生的污泥需进行浓缩、脱水、固化等处理,否则易造成二次污染。化学沉淀法适用于水质比较复杂、水量变化较大的低放射性废水,一般来说,该方法在与其它方法联用时作为预处理方法;并且随着放射性废水处理技术的发展,化学沉淀法开始逐渐被新型处理工艺所取代。

化学沉淀法特点总结

化学沉淀法特点总结

优点

缺点

适用对象

方法简便、费用低廉、对大多数放射性核素具有较好的去除效率,以及对水质水量适应性强的优点,同时使用的处理设备和技术都有相当成熟的经验

去污系数较低,产生的污泥需进行浓缩、脱水、固化等处理,否则易造成二次污染

适用于水质比较复杂、水量变化较大的低放射性废水

资料来源:观研天下整理

2、过滤法

        过滤法主要是去除废水中悬浮物质,对于离子态的放射性核素去除效率很低,在实际放射性废水处理中主要作为预处理使用。在放射性废水处理中,常用的过滤装置有三种:填料式滤池———池底填充活性炭、石英砂或无烟煤等滤料,运行时将废水泵入滤池中,使废水自行流过滤层,填料式过滤常作为预处理,去除废水中悬浮的颗粒物以及油类和其他有机物;预涂式过滤器———是将粉末状树脂或硅藻土等滤料涂在多孔支撑层上,废水在水压作用下通过涂层而达到过滤的目的,产生的废弃涂料及从废水中截留的污染物经脱水、干燥待进一步处置;滤芯式过滤器———一般采用钢制外壳,壳内装有一个或数个滤芯组件,滤芯采用陶瓷或聚氯乙烯等材料制成,在处理放射性废水时换下的滤芯一般不重复使用,采用水泥固化处置。

3、离子交换法

        许多放射性核素在水中呈离子状态,特别是经过化学沉淀处理后的放射性废水,由于除去了悬浮的和胶体的放射性核素,剩下的几乎是呈离子状态的核素,其中大多数是阳离子;且放射性核素在水中是微量乃至痕量存在的,因而很适合利用离子交换法来进行处理。目前,离子交换法广泛应用于核工业放射性废水处理中。具有离子交换与吸附能力的物质种类很多,可分为无机和有机两种,前者如天然物质海绿砂或合成沸石,后者如磺化煤和树脂。目前实际放射性废水的离子交换处理中,大多数都是采用有机离子交换树脂。离子交换法对所处理的水质要求较为严格,采用离子交换法处理的放射性废水应满足以下水质要求:待处理废水中悬浮固体含量要低,因为悬浮固体会覆盖离子交换剂表面而影响交换过程;废水中溶解总固体含量要低,因为非放射性的溶解态离子会与放射性离子形成竞争吸附;废水中有机污染物含量要低。离子交换树脂需要具有耐辐照的特性。离子交换法对主要裂变产物137Cs、90Sr等具有较高的交换能力和选择性,在水中溶胀小,在较大的pH范围内稳定等优点。当前离子交换法研究的主要方向,一是合成适用于处理放射性废水的树脂,以获得交换容量大、洗脱率高、抗辐射降解能力强的树脂;二是使离子交换设备小型化、系列化,并向生产装置连续化、操作自动化发展,以降低投资、减少占地、简化管理。

离子交换法特点总结

离子交换法特点总结

优点

缺点

适用对象

离子交换法对主要裂变产物137Cs90Sr等具有较高的交换能力和选择性,在水中溶胀小,在较大的pH范围内稳定等优点

待处理废水中悬浮固体含量要低,因为悬浮固体会覆盖离子交换剂表面而影响交换过程;废水中溶解总固体含量要低,因为非放射性的溶解态离子会与放射性离子形成竞争吸附;废水中有机污染物含量要低。离子交换树脂需要具有耐辐照的特性。

广泛应用于核工业放射性废水

资料来源:观研天下整理

4、蒸发浓缩法

        蒸法浓缩法是目前广泛采用的一种放射性废水处理方法。该法的基本原理是:进入蒸发器的废水通过蒸汽或电热器加热至沸腾,废水中的水分逐渐蒸发成水蒸汽,经冷却凝结成水。除氚、碘等极少数核素外,废水中大多数放射性核素都不具有挥发性。因此,只有极少数的核素通过微小液滴的夹带作用进入蒸汽中,大多数放射性核素留在蒸残液中,从而达到废水中核素的浓缩分离。

        放射性废水处理常用的蒸发器主要包括釜式蒸发器、强制循环蒸发器、自然循环式蒸发器等类型。蒸发法处理对绝大多数核素具有很好的分离效果,并且对不同水质的废水有良好的适应性,各种放射性水平的废水都可以采用蒸发法处理。蒸发浓缩法的优点主要有:①去污系数高。使用单效蒸发器处理只含有非挥发性放射性污染物的废水时,去污系数大于104;而使用多效蒸发器和带有除雾沫装置的蒸发器时,可高达106~108。②灵活性大。既可处理高、中放废水,也可处理低放废水;既可以单独使用,也可以与其他方法联合使用。③不需要使用其他化学试剂,不会产生二次污染。④方法相对成熟,安全可靠。尽管蒸发法效率较高,但动力消耗大、费用高。此外,还存在着腐蚀、泡沫、结垢和爆炸等危险。因此,该方法较适用于处理总固体含量高、化学成分变化大、需要高的去污系数且流量较小的废水,特别是中、高放射性水平的废水。

        蒸发法的不足之处是能量消耗大,对于挥发性核素如氚(3H)、碘(131I)、钌(103Ru、106Ru)、铷(86Rb)等分离效果差,而且蒸发装置存在易结垢和产生泡沫等问题。新型高效蒸发器的研发对于蒸发浓缩法的推广利用具有重大意义,为此,许多国家进行了大量工作,如压缩蒸汽蒸发器、薄膜蒸发器、脉冲空气蒸发器等,都具有良好的节能降耗效果。另外,针对废液的预处理、消泡和除垢等问题,也进行了不少研究。

离子交换法特点总结

离子交换法特点总结

优点

缺点

适用对象

①去污系数高。②灵活性大。③不需要使用其他化学试剂,不会产生二次污染。④方法相对成熟,安全可靠。

能量消耗大,对于挥发性核素如氚(3H)、碘(131I)、钌(103Ru106Ru)、铷(86Rb)等分离效果差,而且蒸发装置存在易结垢和产生泡沫等问题。

广泛应用于放射性废水

资料来源:观研天下整理

5、吸附法

        吸附法是利用多孔性固体吸附剂来处理放射性废水,使其中所含的放射性核素吸附在吸附剂上,从而达到去除的目的。作者所在的课题组在吸附法处理放射性废水方面开展了大量的研究工作,采用的吸附材料包括纳米磁性壳聚糖、天然及改性沸石、酿酒酵母等。吸附法具有操作简单、运行成本低、处理效果好等优点,尤其是在处理低浓度重金属废水时吸附技术更加具有优势。

        在对放射性废水的处理中,常用的吸附剂有活性炭、沸石。其中沸石价格低廉、安全易得,与其他无机吸附剂相比,沸石具有较大的吸附能力和较好的净化效果;如去除水中放射性裂变产物,高岭土的去污系数为4.5~6.2,蛭石的去污系数为3.3~4.3,软锰矿的去污系数为8.2,而沸石的去污系数为62~68。沸石的净化能力比其他无机吸附剂高达10倍,兼有离子交换剂和过滤剂的作用。

6、生物还原/生物吸附法

        当浓度超过一定值后,放射性核素对于微生物会产生毒害作用。但对于低浓度、数量大、成分复杂且有机污染严重的放射性废水,生物处理是一种具有研究价值的方法。

生物方法治理放射性核素污染有下列两种途径:

        (1)生物还原:利用微生物将金属离子还原。如果该金属离子的还原态毒性较小,溶解度较低,则可以降低该金属离子的毒性并使之沉淀。已有研究表明,自然界中存在许多微生物可以还原As(V)、Se(VI)、Cr(VI)、Fe(III)、Mn(VII)等金属离子。例如,许多好氧和厌氧细菌利用基于细胞色素的呼吸链和还原酶,通过不同的底物转移电子,可以将Cr(VI)还原为Cr(III)。Escherichiacoli、Desulfovibriodesulfuricans和Geobactersulfurreducens中的氢化酶可以在氢存在的条件下,将放射性核素Tc(VII)还原,从而形成氧化物沉淀。16SrRNA基因分析结果表明,这些微生物几乎都属于原核微生物。到目前为止,人们关于真核微生物转化重金属和放射性核素知之甚少。

        (2)生物吸附:生物吸附概念最早由Ruchhoft提出,他利用活性污泥去除水中的放射性核素Pu,并认为Pu的去除是由于微生物的繁殖形成具有较大面积的凝胶网,使微生物具有吸附能力。大量研究结果表明,一些微生物,如细菌、真菌、酵母和藻类等,对金属有很强的吸附能力。生物质吸附金属的机理十分复杂,它们对重金属的作用可以分为生物吸附和生物积累两个不同的生物化学过程。生物积累仅发生在活细胞内,当活细胞生存在环境中时,它可以通过多种机理,包括运输以及细胞内外的吸附来“提高”本身的金属含量。已提出的金属运送机制有脂类过度氧化、复合物渗透、载体协助及离子泵等。生物积累是一个主动过程,它比生物吸附慢得多,是通过微生物的新陈代谢伴随着能量消耗进行的。由于这一过程和细胞代谢直接相关,因此,许多影响生物活性的因素都能影响金属的吸附。

        随着生物技术的发展,对微生物与重金属及放射性核素之间相互作用机制的研究不断深入,人们逐渐认识到利用微生物治理放射性废水污染是一种极有应用前景的方法。用微生物菌体作为生物处理剂,吸附存在于水溶液中的铀等放射性核素,效率高、成本低、耗能少,且不产生二次污染物,可以实现放射性废物的减量化目标,为核素的回收利用或地质处置创造有利条件。据报道,Geobactersulfurreducens细菌能够去除地下水中溶解性的铀,Geobacter能够使溶解性的U(VI)还原为不溶解的U(IV),从而使U以固体形式沉淀下来,因此,这种细菌有可能被用于放射性核素的生物处理。

        生物吸附法(biosorption)利用生物体或其衍生物吸附/吸收废水中的金属离子,再经固液分离,达到净化目的。这种新方法,适宜处理废水量大、浓度低的放射性废水,具有高效、廉价的特点,受到广泛关注。该方法利用各种生物材料,如芽孢杆菌、青霉菌、酵母、海藻等来吸附除去水中放射性核素离子,可以将废水中的核素离子浓度降得非常低,甚至直接达到排放要求。

7、膜分离法

        膜分离技术作为一种新兴的分离技术,近些年得到快速发展。膜分离技术处理放射性废水的基本原理是借助选择性透过的薄膜,以压力差、温度差、电位差等为驱动力,对废水中的放射性核素实现分离浓缩。对于中、低浓度放射性废水,经两级反渗透净化,一般都能达到排放标准。膜处理技术具有物料无相变、分离效率高、能耗低、设备简单、操作方便、易于管理和维护、适应性强等特点,为放射性废水处理提供了一种新途径,具有广泛的应用前景。

        在放射性废水处理研究中采用的膜技术主要有微滤(MF)、超滤(UF)、反渗透(RO)、纳滤(NF)、电渗析(ED)、膜蒸馏(MD)等方法,及其组合工艺。

         MF工艺主要作为预处理工艺,应用于放射性废水处理中,也可以与吸附络合等联合使用;

         UF工艺大多数与化学处理工艺联合使用,以提高核素的截留效率。由于大多数络合剂选择性较强,因此如果能找到合适的络合剂,这种组合工艺对于处理成分较简单的放射性废水有着很好的应用前景同时,UF也可以作为前处理与RO连用,一方面可以有效降低后续RO处理负荷;另一方面可以去除绝大多数悬浮物和高分子物质,抑制RO膜污染;

         RO对绝大多数核素具有很高的截留效率,加之该工艺已经有多年的应用经验,工艺成熟,因此在放射性废水处理中得到了广泛的应用;

         MD是一种高效的膜分离技术,在有关放射性废水处理报道中,MD出水水质是最好的,浓缩因子高,且产生的二次污染物很少。该工艺在放射性废水减量化处理方面显示出良好的应用前景,尤其是在有废热可以利用的核电厂等废水处理方面。(CJ)


          欲了解更多内容,请参阅我们的行业分析报告:
        《2021年中国膜处理行业分析报告-行业深度研究与投资定位研究
        《全球膜处理行业发展驱动因素分析报告

        行业分析报告是决策者了解行业信息、掌握行业现状、判断行业趋势的重要参考依据。随着国内外经济形势调整,未来我国各行业的发展都将进入新阶段,决策和判断也需要更加谨慎。在信息时代中谁掌握更多的行业信息,谁将在未来竞争和发展中处于更有利的位置。

        报告订购咨询请联系:
        电话:400-007-6266   010-86223221
        客服微信号:guanyankf
        客服QQ:1174916573
        Email:sales@chinabaogao.com

更多好文每日分享,欢迎关注公众号

更多好文每日分享,欢迎关注公众号

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。

我国MTBE行业呈“供强需弱”态势 产品价格与利润齐跌

我国MTBE行业呈“供强需弱”态势 产品价格与利润齐跌

2025年上半年,我国MTBE行业整体呈现鲜明的“供强需弱”运行态势。受此影响,MTBE产品价格与行业利润双双下跌,部分工艺装置甚至陷入亏损。面对国内供应压力加大的局面,出口成为消化过剩产能的重要途径,推动MTBE 出口量实现快速增长。

2025年09月09日
我国正丁醇产能集中度下滑 市场呈现“供应充裕、需求滞后”特征

我国正丁醇产能集中度下滑 市场呈现“供应充裕、需求滞后”特征

我国正丁醇行业自2023年起进入扩能加速期,产能集中度下滑,头部企业产能规模排名呈现动态洗牌特征。目前,其下游消费结构高度集中,2024年丙烯酸丁酯、醋酸丁酯和DBP三大主力产品合计消费占比超过85%。2025年上半年,正丁醇市场呈现“供应充裕、需求滞后”特征,价格整体承压下行。

2025年09月08日
我国氧化铁颜料生产方法多元化 环保与能耗新国标推动行业绿色转型

我国氧化铁颜料生产方法多元化 环保与能耗新国标推动行业绿色转型

在我国,氧化铁颜料以其优异性能广泛应用于建材、涂料、化妆品、橡胶、塑料、造纸、陶瓷等行业,其中涂料占据最大消费份额。2025年上半年,我国氧化铁颜料产销量均上升,但出口需求有所回落。目前行业生产方法呈现多元化特征,以湿法工艺为主流。在环保与能耗双重要求下,行业正积极向绿色方向转型。

2025年09月08日
天然色素行业:政策及市场推动下中美两国替代空间广 全球有望实现较快增长

天然色素行业:政策及市场推动下中美两国替代空间广 全球有望实现较快增长

从全球主要市场看,欧盟早在2008年就已要求在食品包装披露六种合成色素的使用信息,这几乎消除了这些色素在食品和饮料产品中的使用,同时推动天然色素的替代进程,根据数据,目前欧洲天然色素渗透率已超80%。

2025年09月04日
我国环氧丙烷价格震荡下行 亏损程度进一步增加

我国环氧丙烷价格震荡下行 亏损程度进一步增加

我国环氧丙烷下游消费以聚醚多元醇为主,2024年占比超过75%。近年来,在聚醚多元醇产量强劲增长的拉动下,环氧丙烷表观消费量的持续上升。与此同时,我国环氧丙烷行业供给能力不断提升,产能产量持续增长,推动进口依存度不断下滑。值得注意的是,全球环氧丙烷产能持续向我国集中,目前我国已成为全球最大的环氧丙烷生产国。然而,自20

2025年09月02日
我国丙烯酸丁酯下游消费高度集中 供需错配下价格整体下跌

我国丙烯酸丁酯下游消费高度集中 供需错配下价格整体下跌

我国丙烯酸丁酯的下游消费结构高度集中,主要集中于胶粘剂和丙烯酸乳液两大领域。2025年以来,在行业产能持续放量的同时,下游胶粘剂、丙烯酸乳液等领域需求不及预期,叠加国际市场需求疲软,导致市场供需矛盾日益凸显,产品价格整体呈现下行态势。展望2025年下半年,随着巴斯夫湛江基地40万吨新产能的投放,国内市场供应压力预计将进

2025年09月01日
我国钛白粉下游消费以涂料为主 盈利空间收窄下行业掀起涨价潮

我国钛白粉下游消费以涂料为主 盈利空间收窄下行业掀起涨价潮

我国钛白粉下游消费以涂料为主,2023年占比接近六成;塑料次之,占比超20%;造纸位列第三,占比约10%。2019至2024年间,钛白粉出口持续放量,但2025年1-7月却呈现“量价齐跌”。与此同时,国内钛白粉均价走低,行业盈利空间收窄,以龙佰集团、安纳达、金浦钛业等为代表的头部企业其钛白粉业务营收与毛利率普遍下滑。为

2025年08月29日
我国氯碱行业分析:产能增速整体放缓 老旧装置改造有望成为抓手

我国氯碱行业分析:产能增速整体放缓 老旧装置改造有望成为抓手

氯碱行业主要包括烧碱和聚氯乙烯两大产品。近两年,我国氯碱行业产能增速整体有所放缓,并且后期实际投放产能有限。同时,由于氯碱属于高耗能行业,政策推动下的低效产能改造升级有望成为完成节能降碳目标的抓手。

2025年08月28日
微信客服
微信客服二维码
微信扫码咨询客服
QQ客服
电话客服

咨询热线

400-007-6266
010-86223221
返回顶部