导读:核电站发展历程:二代主力、三代开建中、四代在研中。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过传热管把热量传给管外的二回路水,使水沸腾产生蒸汽。随后冷却剂流经蒸汽发生器后,再由主泵送入反应堆,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。
参考《2016-2022年中国核能发电产业深度调查与十三五发展动向预测报告》
目前,核电站划分为了四代:第一代是实验性的核电站,现都已退役;第二代是当今核电的主力;第三代核电站现已开始建设;第四代尚处于试验阶段。
第一代核电站的开发与建设开始于上世纪 50 年代。从 1951 年美国进行了世界首次核能发电试验开始,前苏联、美国、英国等国家陆续建立了实验性核电站,其目的在于验证核电设计技术和商业开发前景。
第二代核电站为技术成熟的商业堆,目前在运的核电站绝大部分属于第二代核电站。上世界 60 年代后期,在实验性和原型核电机组基础上,陆续建成电功率在 30 万千瓦的压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、石墨水冷堆(LWGR)等核电机组,它们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明。其中压水堆和沸水堆由于其简单、可靠、经济性好等优势,得到广泛采用。目前世界上运行中的 447 座核反应堆中有 288 座(64.4%)为压水堆,78 座(17.4%)为沸水堆。上世纪 70 年代,因石油涨价引发的能源危机促进了核电的大发展。随后 1986 年的切尔诺贝利核电站事故,使得核电陷入了漫长的寒冬期。
压水堆核电站的一回路系统与二回路系统完全隔开。首先,一级回路中的主泵将高压冷却剂送入反应堆(一般冷却剂保持在 120~160个大气压)。在高压情况下,冷却剂的温度即使 300℃多也不会汽化。
冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过传热管把热量传给管外的二回路水,使水沸腾产生蒸汽。随后冷却剂流经蒸汽发生器后,再由主泵送入反应堆,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。
沸水堆最大的特点就是只有一级回路。冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。
第三代核电站:第三代反应堆派生于目前运行中的第二代反应堆,设计基于同样的原理,并在技术上吸取了这些反应堆几十年的运行经验,可以看做是第二代核电站在安全性和经济性方面的升级版。
第三代核电站是指满足《美国用户要求文件(URD)》或《欧洲用户要求文件(EUR)》,具有更高安全性的新一代先进核电站。它具有以下优越性:
① 在设计上必须具有预防和缓解严重事故的设施; ② 在经济上能与联合循环的天然气机组相竞争; ③ 在能源转换系统方面大量采用二代的成熟技术,可以在近期进行商用建造。
第四代核电站:2000 年 1 月,在美国能源部的倡议下,美国、英国、瑞士、南非、日本、法国、加拿大、巴西、韩国和阿根廷等九个有意发展核能的国家,联合组成了“第四代国际核能论坛(Generation IV International Forum, GIF)”,于 2001 年 7 月签署了合约,约定共同合作研究开发第四代核能技术。
2002 年 9 月 19 日至 20 日,GIF 在东京召开了会议,参加国家除上述九国外,还增加了瑞士。会上各国对第四代核电站堆型的技术方向形成共识,即在 2030 年以前开发六种第四代核电站的新堆型。
这 6 种第四代核电站包括 3 种热中子堆(超高温气冷堆、超临界水冷堆、熔盐反应堆)和 3 种快中子堆(气冷快堆、钠冷快堆、铅冷快堆)。
通常裂变产生的高速中子(快中子)需要通过慢化剂减速成为较慢的中子(热中子),才能更好的被铀-235 捕捉,以提升核燃料的链式裂变反应的效率,这种反应堆被称为热中子堆。快中子反应堆是指没有中子慢化剂的核裂变反应堆,虽然技术难度大,但是可以利用反应中产生的快中子将铀-238 转变成钚-239,从而“变废为宝”。根据设想,第四代核能方案的安全性和经济性将更加优越,废物量极少,遇到紧急情况无需厂外应急,并具备固有的防止核扩散的能力。
资料来源:公开资料,中国报告网整理,转载请注明出处(ww)。

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。