导读:基于深度学习方法机器翻译发展经历三个阶段。随着深度学习的进展,机器翻译技术的到了进一步的发展,翻译质量得到快速提升,在口语等领域的翻译更加地道流畅。
近年来,随着深度学习的进展,机器翻译技术的到了进一步的发展,翻译质量得到快速提升,在口语等领域的翻译更加地道流畅。深度学习的技术核心是一个拥有海量结点(神经元)的深度神经网络,可以自动的从语料库中学习翻译知识。一种语言的句子被向量化之后,在网络中层层传递,转化为计算机可以“理解”的表示形式,再经过多层复杂的传导运算,生成另一种语言的译文。实现了 “理解语言,生成译文”的翻译方式。广泛应用于机器翻译的是长短时记忆循环神经网络,很好地解决了自然语言句子向量化的难题,使得计算机对语言的处理不再停留在简单的字面匹配层面,而是进一步深入到语义理解的层面。
基于深度学习方法的翻译发展经历三个过程:
1) “编码-解码新框架”(NalKalchbrenner,Phil Blunsom,2013)
对源语言句子使用编码器(卷积神经网络)将其映射为一个连续、稠密的向量,然后再使用解码器(递归神经网络)将该向量转化为目标语言句子;其优势在于使用递归神经网络能够捕获全部历史信息和处理变长字符串,然而因为在训练递归神经网络时面临着“梯度消失”和“梯度爆炸”问题,所以长距离的依赖关系依旧难以得到真正处理。
2) 引入长短期记忆(IlyaStuskever 等,2014)
该架构中,无论是编码器还是解码器都使用了递归神经网络。同时,在生成目标语言词时,解码器不但考虑整个源语言句子的信息,还考虑已经生成的部分译文。该方法通过设臵门开关解决了训练递归神经网络的问题,能够较好地捕获长距离依赖。此外,引入长短期记忆大大提高了端到端机器翻译的性能,取得了与传统统计机器翻译相当甚至更好的准确率。
3) 基于注意力的端到端神经网络翻译(YoshuaBengio 研究组,2015)当解码器在生成单个目标语言词时,仅有小部分的源语言词是相关的,绝大多数源语言词都是无关的。因此为每个目标语言词动态生成源语言端的上下文向量,而不是采用表示整个源语言句子的定长向量能很好地提升翻译效率,这便是基于内容的注意力计算方法。
科技巨头基于深度学习的机器翻译研究进展
谷歌运用深度学习开发出一款自动翻译应用,能够将手机拍摄的图像中的文字自动翻译并且直接覆盖在原有图像之上。
资料来源:公开资料,中国报告网整理,转载请注明出处(ww)。
【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。