导读:深度学习技术引领这一轮人工智能浪潮两大特性。深度学习首先直接应用于多个通用基础功能模块:语音,文字,搜索词,图片,视频,标签,实体,短语,音频特性等,能够在多个领域具备通用性。
参考《2016-2022年中国人工智能市场专项调查及十三五投资前景预测报告》
第一,深度学习首先直接应用于多个通用基础功能模块:语音,文字,搜索词,图片,视频,标签,实体,短语,音频特性等,能够在多个领域具备通用性。
深度学习具备非常好的通用性:基础模块、端到端的简单模型
第二,深度学习区别于传统机器学习算法,不需要人为提取数据特征的环节,具备非常简单的“端到端”训练特性,能够快速迁移到各个领域,因而具备极为广泛的应用空间;第三,深度学习作为一种数据驱动的机器学习算法,其训练效果能够随着数据量的增长显著提升,在大数据时代将发挥更大的作用。
深度学习效果随着数据规模增加显著提升
实质上人类很多智能或者技能都是先通过学习经验积累(即可抽象为大量数据训练的过程),再举一反三应用到其他领域(泛化至其他输入数据),这一点跟深度学习的基本功能非常类似,所以随着深度学习的进一步完善,人类诸多需依靠经验积累的能力都可以逐步依靠深度学习来实现。
资料来源:公开资料,中国报告网整理,转载请注明出处(ww)。
【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。