导读:图灵之后,对人工智能的研究分化为两大派别:一是强调思路模拟的控制派;二是强调自我意识的仿生派。简单而言,控制派认为人工智能就如同一个专家会议,希望通过完美无缺的逻辑来实现思考;而仿生派认为人工智能就是人脑,人脑怎样思考,计算机大脑就怎么思考。
参考《2017-2022年中国人工智能市场运营态势及十三五发展态势预测报告》
AlphaGo与深蓝、沃森的区别是采用了神经网络,实现了深度学习。那么神经网络与深度学习到底是什么?它们的出现对计算机和人工智能的发展到底起到了多大的作用呢?
要了解计算机怎样思考,不得不提到人工智能之父——阿兰·麦席森·图灵,这位生于20世纪初,直到42岁英年早逝时也没有看到一台真正意义上计算机的数学天才,提出了著名的“图灵实验”,即如果第三者无法辨别人类与人工智能机器反应的差别,则可以论断该机器具备人工智能。
图灵之后,对人工智能的研究分化为两大派别:一是强调思路模拟的控制派;二是强调自我意识的仿生派。简单而言,控制派认为人工智能就如同一个专家会议,希望通过完美无缺的逻辑来实现思考;而仿生派认为人工智能就是人脑,人脑怎样思考,计算机大脑就怎么思考。
1948年,美国应用数学家诺伯特·维纳的著作《控制论》出版,他开启的控制论(cybernetics)被称作20世纪最伟大的科学成就之一,同时也被尊为人工智能中控制派的鼻祖。维纳的学生迈克尔·阿比卜出版了控制论的科普读物《大脑、机器和数学》,并随后创办了麻省理工大学计算机系。
1951年,后来获得第一届图灵奖的美国科学家马文·明斯基创造了一台学习机——Snare,从中发现了在当时看来神经网络致命的弱点。明斯基的另一个重大贡献是与另两位在计算机领域声名显赫的人物——麦卡锡、香农创办了第一个人工智能学术性团体“达特茅斯会议”。2016年初,明斯基去世,享年89岁,三天以后,谷歌宣布采用深度学习的AlphaGo战胜欧洲围棋冠军。
如果要追溯仿生派的起源,则早在图灵实验提出之前的1943年,美国科学家麦卡洛可和皮茨就发表了模拟神经网络的论文。1949年,加拿大心理学家赫布提出了著名的“赫布理论”,即突触前神经元向突触后神经元的持续重复的刺激可以导致突触传递效能的增加,这一理论直到2000年才在动物实验中被证实。1958年,美国实验心灵学家罗森布拉特在计算机上成功模拟了被称为“感知机”的神经网络模型。感知机能够处理一些简单的视觉信号,虽然还非常粗糙和初级,但可以说第一次实现了对人脑的成功模拟。
可惜的是,在罗森布拉特发明“感知机”后长达20多年的时间里,神经科学和信息科学并没有很好的结合,两者各有成就,但仿生派始终不敌控制派。直到20世纪80年代,仿生派才进入一个繁荣时期,其中以1982年霍普菲尔德提出了递归神经网络,和1986年鲁姆哈特和麦克莱兰提出了具有里程碑意义的BP神经网络为代表。
在20世纪90年代,互联网兴起和普及,大批计算机科学家投入到有巨大市场和经济效益的互联网相关研究中,无论是控制派还是仿生派取得的成就都被互联网的高速发展所掩盖,当然,互联网作为新的信息技术手段也对人工智能的进步提供了全新的平台。
2006年,杰弗里·辛顿提出了反向传播算法和对比散度算法,即“深度学习”,突破了明斯基在半个世纪前提出的神经网络存在的局限。2012年,斯坦福大学和谷歌秘密X实验室用1000台计算机构建了全球最大的电子模拟神经网络,该网络拥有10亿个连接的人工神经网络“谷歌大脑”。实验人员向神经网络展示1000万断(张)从YouTube上随机提取的图像,最后,系统在没有任何外界干预的情况下,认识到了“猫”是什么并成功分辨出猫的照片,准确率超过80%,这一事件为人工智能发展翻开崭新一页,标志着以“深度学习”为代表的人工智能发展即将进入应用阶段。
资料来源:公开资料,报告网整理,转载请注明出处(ww)。
【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。